UNITED STATES DISTRICT COURT FOR THE
NORTHERN DISTRICT OF ILLINOIS
EASTERN DI1VISION

APPLE INC. and NeXT SOFTWARE
INC. (f/k/a NeXT COMPUTER, INC.),

Plaintiffs, No. 1:11-cv-08540

Judge Richard A. Posner.
MOTOROLA, INC. and MOTOROLA
MOBILITY, INC,,

~— O N N ' — — ' '

Defendants.

ORDER

This order resolves motions, argued January 23, for summary judgment regard-
ing four patents, plus claim construction of a fifth patent, also argued at that
hearing.

As a result of these orders, the following patents involve, unless I am mistaken
(please point out if I am), issues for trial: Apple ‘002, ‘263, ‘337, ‘354, ‘647, ‘867,
‘949; Motorola ‘516, ‘559, ‘898.

Motorola’s summary judgment motion regarding Apple ‘486 and ‘852 is
granted, and Apple’s motion for summary judgment is dismissed as moot

Apple claims that certain Motorola devices running the Android operating
system infringe U.S. Patent Number RE 39,486 E (“Extensible, Replaceable Net-
work Component System”) and related U.S. Patent Number 5,929,852 (“Encapsu-
lated Network Entity Reference of a Network Component System”). I will refer
to these patents collectively as the “Network Component Patents.” Motorola has
moved for summary judgment that its devices do not infringe the patents.

Claim 1 of the ‘486 patent describes “replaceable...component[s]” in a layered
computing system. (The ‘852 patent incorporates the replaceable component sys-
tem of ‘486 by reference at 13:22—44, and my interpretation of the terms applies
equally to both patents’ claims.) The use of replaceable components promotes
program flexibility and facilitates customization because replaceability enables
the user to alter functionality within a given program. The prior art was “appli-

No. 1:11-cv-08540 2
cation-based,” which meant that users had to accept an application’s functional-
ity as is or not use it at all.

Apple argues that the Java objects in the Android Runtime (the part of the
Android system that facilitates communication between the processor and the
applications) are the infringing replaceable components. Motorola asks that I
construe “replaceable components” to mean components replaceable by Android
end-users, and argues that the allegedly infringing Java objects are irreplaceable
under that claim construction.

Apple’s opening argument that apparatus claims, such as claim 1, may never
be construed to require functional limitations doesn’t mesh with the claim lan-
guage of the patent. A patent’s claims may describe a physical apparatus without
reference to its components’ capabilities, and when described in “purely struc-
tural terms” cannot be altered by functional limitations derived from the patent
specification. Schwing GmbH v. Putzmeister Aktiengesellschaft, 305 F.3d 1318, 1324
(Fed. Cir. 2002); Hewlett-Packard Co. v. Bausch & Lomb, Inc., 909 F.2d 1464, 1468
(Fed. Cir. 1990). But see ACCO Brands, Inc. v. Micro Security Devices, Inc., 346 F.3d
1075, 107678 (Fed. Cir. 2003). But apparatus claims can incorporate functional
limitations in the description of the claimed apparatus elements without invali-
dating the patent. Typhoon Touch Technologies, Inc. v. Dell, Inc., 659 F.3d 1376, 1380
(Fed. Cir. 2011); Microprocessor Enhancement Corp. v. Texas Instruments Inc., 520
F.3d 1367, 1374-75 (Fed. Cir. 2005). The replaceable components in the layered
computing arrangement described in ‘486 are not a purely structural description,
but a structural description defined in relation to a specific function of replace-
ability. (A car’s brakes are replaceable, as are lightbulbs, but they require of the
replacer different degrees of skill and effort.) The ‘486 apparatus is innovative
because of the ability to replace components, and that claim term must be under-
stood to interpret the computing environment patented by ‘486. I therefore reject
Apple’s argument that clarifying who must be able to replace the components
would improperly impose a functional limitation on a purely structural appara-
tus claim.

Interpretation of patent claim language is based primarily on intrinsic evi-
dence, including the patent specification. Bell Atlantic Network Services, Inc. v. Co-
vad Communications Group, Inc., 262 F.3d 1258, 1267 (Fed. Cir. 2001). The ‘486
specification emphasizes the flexibility of the replaceable components; “if a user
does not like the way a particular component operates, that component can be
replaced with a different component provided by another developer.... Clearly,
the replaceability feature of the novel network component system provides a
flexible alternative to the user” in contrast with the prior art of using “monolithic
applications” that cannot be altered by the user. This is convincing evidence that

No. 1:11-cv-08540 3
the system described in claim 1 intended its components to be replaceable by
“users.”

But is an Android developer a “user”? Apple argues that he is, and cites the
Android developers’ guide as an instruction manual for replacing components of
the Android system. And even if “user” is confined to end-user (the consumer),
the Android developers” guide contemplates that some end-users skilled in An-
droid programming will customize their phones’ functionality. “Android Com-
patibility,” http://source.android.com/compatibility/index.html (visited Jan. 24,
2012) (“a mobile phone is a highly personal, always-on, always-present gateway
to the Internet. We haven't met a user yet who didn't want to customize it by ex-
tending its functionality. That's why Android was designed as a robust platform
for running after-market applications”).

But the developers’ guide is geared towards modification of Android applica-
tions, not the Android Runtime environment. It states that “Android offers de-
velopers the ability to build extremely rich and innovative applications,” and
that the Android Runtime libraries provides the “functionality available in the
core libraries of the Java programming language” to facilitate application devel-
opment. “What is Android?” http://developer.android.com/guide/basics/what-is-
android.html (visited Jan. 24, 2012). The parties agree that the Android Runtime
environment, not the higher-level Android application environment, is the
“software component architecture layer” which must contain replaceable com-
ponents to infringe the Network Component Patents. Motorola’s expert has said
that “the Android Runtime, including its Java classes, is part of the core infra-
structure of Android, and it cannot be modified or replaced by a user, other than
through a full system update.” Apple’s response is that such a full system update
is still “replacement” if the updated code replaces any Java objects of the An-
droid Runtime libraries.

The examples of component replacement within the Android Runtime envi-
ronment described by Apple’s expert are remote from the interchangeable com-
ponent system described in the ‘486 patent specification. The specification states
that an “object[] of the ['486] invention is to simplify a user’s experience” and to
“provide a platform that allows third-party developers to extend a layered net-
work component system by building new components that seamlessly interact
with the system components.” Components that are theoretically replaceable
only by manually updating code during a full Android system update neither
simplify the user’s experience nor promote the formation of a third-party devel-
oper community creating interchangeable components to modify Android Run-
time functionality.

Apple’s expert asserts that he has replaced Java objects in his Motorola Droid
X’s Android Runtime environment, but has not explained why even sophisti-

No. 1:11-cv-08540 4
cated users would want to make such modifications, or whether the components
he substituted had to be written from scratch. He fails to rebut Motorola’s evi-
dence that the components of the Android Runtime environment are not “re-
placeable” as the term would be understood by a knowledgeable person in light
of the ‘486 patent specification. The language of the patent specification, which
touts the invention’s ability to simplify users’ experience and spur third-party
development of interchangeable components, describes an invention similar to
the application layer of the Android system, but not to the Android Runtime
layer. Since the existence of meaningfully replaceable components within An-
droid Runtime is a necessary element of Apple’s infringement claim, Motorola is
entitled to summary judgment of noninfringement. Vivid Technologies, Inc. v.
American Science & Engineering, Inc., 200 F.3d 795, 807 (Fed. Cir. 1999).

Motorola’s motion for summary judgment regarding Apple ‘867 is denied

Motorola has moved for summary judgment of noninfringement of Apple’s
U.S. Patent Number 5,519,867 (“Object-Oriented Multitasking System”). The pat-
ent covers an apparatus for allowing incompatible applications and operating
systems to communicate. Some programming languages are “object-oriented”;
others are “procedural.” Object-oriented applications are incompatible with pro-
cedural operating systems (and vice versa), much as an English speaker would
be unable to follow instructions or answer questions in Japanese. The ‘867 patent
bridges this linguistic gap by creating a “wrapper” for procedural operating sys-
tems that makes object-oriented applications compatible with procedural sys-
tems by providing an apparatus for enabling object-oriented applications to ac-
cess procedural system services.

One aspect of this compatibility relates to “threads.” A thread is a series of
code to accomplish a discrete task. To run on a procedural operating system, ob-
ject-oriented applications need to be able to get information from the operating
system about threads; they may need to know about the priority (relative impor-
tance) of a thread, or its state (whether it’s currently running, ready to execute, or
blocked).

Limitation (e) of claim 1 is “means...for enabling said object-oriented applica-
tion to access said services to spawn, control, and obtain information relating to a
thread of execution.” The parties agree that this language describes the function
of enabling object-oriented application to access the operating system’s services
(“said services”) to spawn (create), control, and obtain information relating to a
thread. Motorola argues that its products don’t infringe the ‘867 patent because
they do not enable object-oriented applications to access the operating system to
obtain thread information.

No. 1:11-cv-08540 S)

The foundational component of the operating system in the accused products
is called the Linux kernel, which stores a cached copy of its thread information in
the “Dalvik Virtual Machine,” which is continuously updated. When Android
applications need information from the operating system, they don’t query the
Linux kernel directly, but instead access Linux kernel services via a “virtual ma-
chine,” a replication of a computer (computer in the broadest sense, meaning
computing device) that functions just like the real machine but is achieved
through software rather built from hardware. Motorola argues that there can’t
be infringement because Android applications never access the Linux kernel to
obtain thread information; rather they obtain already-stored thread information
from the virtual machine.

The dispute is over whether the two-step access system involving a virtual
machine is an application that accesses the operating system’s services. Apple’s
expert, Dr. Aldrich, says that the process of caching data and reading the cache
instead of bothering the operating system directly with inquiries is a well-
accepted technique for accessing system services, so one of ordinary skill in the
art would conclude that Motorola’s products enable object-oriented applications
to access system services to obtain thread information. Motorola’s experts dis-
agree, arguing that Aldrich essentially admits that Motorola’s products don’t in-
fringe the ‘867 patent: because these products merely return information already
stored in the virtual machine and never query the actual operating system for
thread information, they do not access the Linux kernel. This clash of experts
created a disputed issue of material fact, precluding summary judgment.

Motorola’s summary judgment motion regarding Apple ‘002 is denied
Motorola has moved for summary judgment of noninfringement of Apple’s
U.S. Patent Number 6,493,002 (“Method and Apparatus for Displaying and Ac-
cessing Control and Status Information in a Computer System”). The patent cov-
ers the well-known “control strips” or “toolbars” commonly found on personal
computer operating systems. A toolbar is a window that, when it appears at all,
appears in a top “window layer” that other windows—those displaying files or
running programs—cannot overlap or block though they can overlap one an-
other. The toolbar displays basic status information about the computer system
through “display areas” (such as icons or other graphical representations), which
might indicate the system’s audio volume, screen brightness, remaining battery
power, internet connection strength, clock time, and so forth. As described by the
‘002 patent, the user can interact with at least one of the display areas using the
cursor or keyboard. Such interactive display areas are “buttons” on the toolbar—
they can be clicked to make changes to the computer system (for instance by di-
minishing or increasing screen brightness). The point of including these display

No. 1:11-cv-08540 6
areas on a single window (the toolbar) and of placing that window in a top win-
dow layer is to allow the user to view general information about his computer
system and change basic settings quickly and conveniently.

Apple asserts that Motorola smartphones and tablets running the Android
operating system infringe claims 1, 21, and 46 of the ‘002 patent. Each of the ac-
cused devices can display two windows (as we’ll see, the two might in fact be
only one) that Apple says infringe the ‘002 patent. The “status bar” is consis-
tently displayed at the top of the accused products” screen and contains display
areas—icons and other indicators—akin to those on a computer’s toolbar, such as
an internet connection icon, a new email icon, a battery life indicator, a clock, and
so forth. The “notification window” is not usually displayed but can be brought
up by the user by way of a downward finger swipe from the status bar. The noti-
fication window contains further display areas to indicate system status, some of
which are interactive buttons; by contrast, none of the display areas on the status
bar are interactive—none can be manipulated by the user to change system set-
tings—though the status bar itself can be swiped to bring up the notification
window.

Claim 1 of the patent, which is largely representative of the other claims as-
serted against Motorola, provides:

An interactive computer-controlled display system comprising: a processor; a
data display screen [e.g., a computer monitor] coupled to the processor; a
cursor control device [e.g., a mouse or touchpad] coupled to said processor
for positioning a cursor on said data display screen; a window generation and
control logic coupled to the processor and data display screen to create an
operating environment for a plurality of individual programming modules
associated with different application programs that provide status and/or
control functions, wherein the window generation and control logic generates
and displays a first window region having a plurality of display areas on
said data display screen, wherein the first window region is independently
displayed and independently active of any application program, and wherein
each of the plurality of display areas is associated with one of the plurality of
individual programming modules, the first window region and the plurality
of independent display areas implemented in a window layer that appears
on top of application programming windows that may be generated; and an
indicia generation logic coupled to the data display screen to execute at least
one of the plurality of individual programming modules to generate informa-
tion for display in one of the plurality of display areas in the first window re-
gion, wherein at least one of the plurality of display areas and its associated
programming module is sensitive to user input, and further wherein the
window generation and control logic and the indicia generation logic use
message-based communication to exchange information to coordinate ac-
tivities of the indicia generation logic to enable interactive display activity.

The boldface passages are those contested by the parties. In particular, Mo-
torola argues that it is entitled to summary judgment because Apple has failed to

No. 1:11-cv-08540 7
raise a genuine factual dispute that Motorola’s products infringed either or both
of two limitations of the ‘002 patent: the “first window region” limitation and the
“message-based communication” limitation.

The parties have not adequately explained one of the grounds on which Mo-
torola seeks summary judgment: the “message-based communication” element
of claim 1 and the apparently similar “sending a message to a programming
module” element in claims 21 and 46. The issue does not appear to be especially
complex, but the parties” briefing of it is impenetrable. Because Motorola has
failed to make its argument comprehensible, either in its brief or at oral argu-
ment, it is not entitled to summary judgment on this ground.

The second ground for summary judgment advanced by Motorola—the “first
window region” limitation—has several elements: It is just a single window,
rather than a group of windows; it has multiple display areas, and at least one
such display area is “sensitive to user input,” or interactive (in other words, it is
a button); and it is “implemented in a window layer that appears on top of appli-
cation programming windows that may be generated.”

Both the status bar and the notification window satisfy the “top window
layer” limitation. Each of them, when displayed, appears on top of any other
windows and cannot be overlapped by another window. Finally, in none of the
devices is any display area on the status bar interactive. The fact that the status
bar may itself be interactive—a downward swipe on it brings up the notification
window —does not mean that it contains any interactive display areas; Apple
does not argue that it does. Motorola’s status bar taken alone therefore does not
infringe the ‘002 patent.

But the notification window does contain interactive display areas. It is true
that the notification window, unlike a conventional personal computer toolbar or
the accused devices’ status bar, is not usually visible and can only be called up
by the user’s downward swiping motion. This prevents the notification window
from fulfilling the toolbar’s primary purpose, as stated in the patent’s specifica-
tion, of making core status indicators conveniently visible and accessible to us-
ers. But the claims, not the specification, determine the scope of the patent and so
must be analyzed to determine infringement. CollegeNet, Inc. v. ApplyYourself,
Inc., 418 F.3d 1225, 1231 (Fed. Cir. 2005); Bayer AG v. Biovail Corp., 279 F.3d 1340,
1348 (Fed. Cir. 2002). Motorola has not pointed to any language in the asserted
claims that suggests that they are limited to windows that are always or usually
visible onscreen or that appear automatically without user action.

Apple told the PTO that the “window layer” claim term meant that “the pre-
sent invention is directed at using individual programming modules that gener-
ate displays that are always visible on a top layer” (emphasis added) and distin-
guished a prior reference from the ‘002 invention on the ground that the prior

No. 1:11-cv-08540 8
reference “only allow[ed] the user an unobstructed view of the system if a button
is selected” —just like the notification window, which comes into view only
when the user performs a downward swipe from the status bar. Yet the asserted
claims, as finally approved by the PTO, do not require that the window be al-
ways visible but only that it appear on top of all other windows and never be ob-
structed when it is generated; nor is the patent limited to toolbars that can be
viewed without the user’s pressing a button. “[B]ecause the prosecution history
represents an ongoing negotiation between the PTO and the applicant, rather
than the final product of that negotiation, it often lacks the clarity of the specifi-
cation and thus is less useful for claim construction purposes.” Phillips v. AWH
Corp., 415 F.3d 1303, 1317 (Fed. Cir. 2005). The patent’s “first window region”
limitation therefore does not provide a ground for granting summary judgment
to Motorola—the status window cannot infringe the ‘002 patent, but for all that
Motorola has shown, the notification window may.

My determination that the notification window might infringe is dispositive
of this motion, but I add that another argument of Apple’s—that the status bar
and notification window together actually constitute a single window, which it-
self infringes the ‘002 patent—is a nonstarter. Whether the status bar and the no-
tification window are two separate windows or a single “composite” window is
a semantic question to which there is no answer that a jury could give; the par-
ties have not suggested what kind of evidence would show that Motorola’s
status bar and notification window are only a single window that cannot be seen
all at once, but only in two glances, by swiping the window down from the top
of the screen. Apple bears the burden of proving that Motorola has infringed its
patent, and thus would have to establish the unity of the status bar and notifica-
tion window taken together to show infringement under this composite-window
theory. It cannot do so, though it may be able to prove that the notification win-
dow taken alone infringes its patent.

Claim construction of the Apple 263 patent

Apple’s ‘263 patent (U.S. Patent No. 6,343,263) describes a computer system
that performs realtime signal processing on serially transmitted data. Claim 1
lays out the architecture of this signal-processing system. It includes two subsys-
tems—a “host central processing unit” and a “realtime signal processing subsys-
tem” —connected by a realtime application program interface (“realtime API” for
short). The realtime API requests realtime services (for instance, video-image
processing) from the realtime signal processing subsystem on behalf of applica-
tions running on the host subsystem, receives instructions from the host subsys-
tem, and supplies the realtime signal processing subsystem with instructions for
signal processing.

No. 1:11-cv-08540 9

Apple alleges that Motorola phones and tablets infringe the ‘263 patent. Mo-
torola countered that its devices don’t infringe because their signal-processing
systems lack a realtime API, and on that basis it moved for a summary judgment
ruling that it had not infringed. I decided this factual dispute couldn’t be re-
solved without construction of the claim term “realtime API.”

Claim 1 asserts “at least one realtime application program interface (API) cou-
pled between the [host] subsystem and the realtime signal processing subsystem
to allow the subsystem to interoperate with said realtime services” (emphasis
added). There is no dispute over the meaning of the word “realtime” generally:
to be “realtime” a system “must satisfy explicit (bounded) response-time con-
straints or risk severe consequences,” namely degraded performance. Philip A.
Laplante, Real-Time Systems Design and Analysis: An Engineer’s Handbook 10
(1993). But the parties differ over how the word should be understood in con-
junction with an API. Motorola asserts that a “realtime API” is a an API that has
realtime functionality, which Motorola defines as “facilitating constant bit rate
handling,” while Apple defines it as an API that facilitates realtime signal proc-
essing, that is, that enables realtime interaction between the two subsystems.

Motorola points out that the inventors identified some components of their
invention as “realtime,” but left the word out of claim 31, which describes an API
that “issu[es] requests to the realtime engine to perform data transformations.”
An API that does that falls within Apple’s broad definition of realtime API as
any API that links the realtime signal-processing system to the host system. Real-
time API in claim 1 must, Motorola reasons, mean something different from the
APl in claim 31, since the latter, even though it fits Apple’s proposed definition
for purposes of claim construction, is not called a “realtime APL.”

There may indeed be a presumption that “API” in claim 31 and “realtime
API” in claim 1 have different meanings, Forest Laboratories, Inc. v. Abbott Labora-
tories, 239 F.3d 1305, 1310 (Fed Cir. 2001); Tandon Corp. v. International Trade
Commission, 831 F.2d 1017, 1023 (Fed. Cir. 1987), but that presumption can be
overcome, for example by the patent specification. Id; see also Philips v. AWH
Corp., 415 F.3d 1303, 1315-17 (Fed Cir. 2005) (en banc). And ‘273’s specification —
“the single best guide to the meaning of a disputed term,” Vitronics Corp. v. Con-
ceptronic, Inc., 90 F.3d 1576, 1582 (Fed. Cir. 1996) —consistently refers to the real-
time API as just the “interface” or the “APL” So too did the inventors during the
patent’s prosecution.

Neither the specification nor the prosecution history suggests that the real-
time API disclosed in claim 1 must itself have realtime functionality, as by facili-
tating constant bit-rate handling (e.g., preventing a streaming video from being
interrupted by incoming data). The specification makes clear that the realtime
signal-processing subsystem must assure constant bit-rate handling, but not that

No. 1:11-cv-08540 10
the realtime API must do so. The patent does describe one embodiment of the
invention as involving the realtime API’s instructing the real-time engine on how
to process the proper number of bits per word, but this doesn’t imply that the
API itself does the constant bit-rate processing, and is therefore consistent with
how the realtime API is described everywhere else in the patent: as an interface
between the realtime subsystem and the host subsystem that receives commands
from the host and passes the instructions along to the realtime subsystem, which
does the realtime processing.

I therefore construe “realtime application program interface” in claim 1 of
the ‘263 patent to mean an “API that allows realtime interaction between two or
more subsystems.”

Ty

United States Circuit Judge

January 25, 2012

